GENERAL COURSE STRUCTURE & THEME

A. Definition of Credit:

1 Hr. Lecture (L) per week	1 Credit
1 Hr. Tutorial (T) per week	1 Credit
1 Hr. Practical (P) per week	0.5 Credit
2 Hours Practical (P) per week	1 Credit

B. Tentative Credit Distribution and Second Year to Final Year curriculum structure for the completion of B.Tech. in Information Technology degree with one Minor/Honors/Research:

Structure of B. Tech.in Information Technology with multidisciplinary minor:

Course Types/ Semester	Ι	II	III	IV	v	VI	VII	VIII	Total
Basic Science Course	8	8							16
Engineering Science Course	7	7							14
Programme Core Course (PCC)		2	15	11	11	11			50
Programme Elective Course (PEC)					8	6	6	-	20
Multidisciplinary Minor (MD M)		-	4	3	4	3			14
Open Elective (OE) Other than a particular program	-		3	3	2	-			8
Vocational and Skill Enhancement Course (VSEC)	2	2		2		2			8
Ability Enhancement Course (AEC -01, AEC-02)		2		2					4
Entrepreneurship/Economics/ Management Courses			2	2					4
Indian Knowledge System (IKS)	2								2
Value Education Course (VEC)			2	2					4
Research Methodology	-	-					2		2
Comm. Engg. Project (CEP)/Field Project (FP)			2						2
Project							6		6
Internship/ OJT								12	12
Co-curricular Courses (CC)	2	2						-	4
Total Credits / Semester with MDM	21	23	28	25	25	22	14	12	170
Total Credits / Semester with Double MDM	21	23	32	28	29	25	13	12	183
Honors Credits/ Semester						3	9	6	18
Total Credits / Semester with MDM +Honors	21	23	28	25	25	25	23	18	188
Research Credits/ Semester							9	9	18
Total Credits / Semester with MDM+Research	21	23	28	25	25	22	23	21	188

Students can opt for any of the following as per the rules and regulations given by institute:

1. B.Tech with one Multidisciplinary Minor=Total 170Credits

2. B.Tech with one Multidisciplinary Minor and Honor in A.I.M.L. = Total 188 Credits

3. B. Tech with one Multidisciplinary Minor and Honor by Research=Total 188 Credits

4.B.Tech with two Multidisciplinary Minors=Total 184 Credits

500 Smita Chavan Head, IT

Dr. Anil Karwa Approved in XXXth Academic Council Me Dated: 5th July 2025

SEMESTER- V																
		Course		Hours per week		per		per					of	valuation in te Marks		
<u>Sr.No</u>	Category	Code	Course Title	L	Т	Р	Credits	ISEI	ISEII	ISEIII	ESE	Total				
1	PCC	ITPCC3001	Artificial Intelligence	3	0	0	3	15	15	10	60	100				
2	PCC	ITPCC3002	Design and Analysis of Algorithm	3	0	0	3	15	15	10	60	100				
3	PCC	ITPCC3003	Cloud Computing	3	0	0	3	15	15	10	60	100				
4	PCC	ITPCC3004	Lab Design and Analysis of Algorithm	0	0	2	1	-	-	25	25	50				
5	PCC	ITPCC3005	Lab Cloud Computing	0	0	2	1	-	-	25	25	50				
6	PEC	ITPEC3001 ITPEC3003 ITPEC3005	Professional Elective I	2	0	0	2	10	10	-	30	50				
7	PEC	ITPEC3002 ITPEC3004 ITPEC3006	Lab- Professional Elective I	0	0	2	1	-	-	25	-	25				
8	PEC	ITPEC3007 ITPEC3008	Professional Elective II	2	0	0	2	10	10	-	30	50				
9	PEC	ITPEC3011 ITPEC3012 ITPEC3013	Professional Elective III	3	0	0	3	-	-	-	100	100				
10	MDM	ITMDM5004 ITMDM6004	Java Programming Introduction to Artificial Intelligence	3	0	0	3	15	15	10	60	100				
11	MDM	ITMDM6005	Lab Java Programming Lab Python Programming	0	0	2	1	-	-	25	-	25				
12	OEC	ITOEC0030	Machine Learning	2	0	0	2	10	10	0	30	50				
13		ITHNC7001	Data Analytics with Python	3	1		4	15	15	10	60	100				
				24	1	Q	20	105	105	150	540	900				
				24	1	ð	29	105	105	150	540	900				

List of Professional Electives (I, II, III)

Professional Elective I	Professional Elective II	Professional Elective III NPTEL/ SWAYAM MOOCs Courses (12 weeks)
ITPEC3001:Internet of Things ITPEC3002: Lab Internet of Things	ITPEC3007:Mathematics for Machine Learning	ITPEC3011:Reinforcement Learning
ITPEC3003:Android Programming ITPEC3004:Lab Android Programming	ITPEC3008Blockchain Technologies	ITPEC3012: Deep Learning for Computer Vision
ITPEC3005:Image Processing ITPEC3006 Lab: Image Processing		ITPEC3013: Cyber Security and Privacy
		Social Networks
		Getting Started with Competitive Programming

ITMDM5004 :Java Programming						
Teaching Scheme Examination Scheme						
Lectures: 03hrs/ week	ISE I	15 Marks				
Tutorial: 0	ISE II	15 Marks				
Credits:03	ISE III	10 Marks				
	End Semester Examination	60 Marks				

Prerequisites: NIL

Course description: Object Oriented Programming is designed to create sophisticated programs to solve real-world problems using object oriented approach. The course emphasizes improve the logical thinking of the students.

Course (Course Outcome: After completing the course, students will able to:					
CO1	Explain the necessity for Object Oriented Programming paradigm over Procedure Oriented Programming					
CO2	Apply object-oriented principles to develop Java applications.					
CO3	Make use of Java standard API library to integrate Java programming with database management.					
CO4	Apply Multithreading and Exception handling concepts to develop efficient and error free codes.					
CO5	Selectobject oriented principles and techniques to implement real world applications.					

Detailed Syllabus:

Unit 1	Introduction to Java and Object-Oriented Programming:
	Java Evolution & Features: Comparison with C and C++, Java and the Internet
	Java Environment: JDK, Bytecode, JVM, Compilation and Execution Process
	Java Program Structure: Java Tokens, Comments, Statements, Console I/O
	Fundamentals of OOP: Comparison with Procedural Programming, Classes and Objects, Data
	Encapsulation, Inheritance, Polymorphism
Unit 2	Java Programming:
	Data Types & Operators: Primitive and Non-Primitive Data Types, Type Casting
	Control Flow: Decision-making (if-else, switch), Loops (for, while, do-while)
	Functions and Methods: Function Prototyping, Method Overloading, Static Methods
	Strings and Arrays: String Handling, StringBuffer, Single & Multi-dimensional Arrays
Unit 3	OOP Concepts using Java:
	Inheritance & Polymorphism: Types of Inheritance, Method Overriding, 'this' and
	'super' keywords
	Abstract Classes & Interfaces: Implementing Interfaces, Multiple Inheritance in Java
	Packages & Access Modifiers: Defining Packages, Importing Packages, Access
	Protection
Unit 4	Exception handling: Exception types, Usage of Try, Catch, Throw, Throws and Finally
	keywords, Built-in Exceptions, Creating own Exception classes
Unit 5	Multithreading: Concepts of Thread, Thread life cycle, creating threads using Thread class
	and Runnable interface, Synchronization, Thread priorities, Inter Thread communication

Text and Reference Books:

- 1. Herbert Schildt, "The Complete Reference Java2", 7th Edition, TMH Publications.
- 2. E Balguruswamy, "Programming with Java A Primer"
- 3. Cay S. Horstmann, Gary Cornell, "Core Java Volume II" Pearson Education.
- 4. StevenHolzner, "Java 2 Black Book", Dreamtech Pub.
- 5. Head First Java, O'rielly publications
- 6. T. Budd (2009), An Introduction to Object Oriented Programming, 3rd edition, PearsonEducation, India.
- 7. Y. Daniel Liang (2010), Introduction to Java programming, 7th edition, Pearson education,India.

Web Resources:

- 1. NPTEL course : Programming In Java https://onlinecourses.nptel.ac.in/noc22_cs47
- 2. Virtual Lab: Core Java Programming https://java-iitd.vlabs.ac.in/

Mapping of Course outcome with Program Outcomes:

C	Program Outcomes								PSO's						
Course outcome	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PS O 2	PS O 3
CO1	1														
CO2		1									1	1	1	1	
CO3														2	
CO4									1					2	
CO5	2	2	3	1	1	1		1	2	2	2	1	3	3	1

3 – High 2 – Medium 1– Low

Assessment:

ISE I:Class Test-I of Maximum Marks-15

ISE II:Class Test-II of Maximum Marks-15

ISE III: Teacher's Assessment of Maximum Marks-10

Teachers Assessment of 10 marks is based on one of the / or combination of few of following

- 1) Course projects
- 2) Power point presentation
- 3) Question & answer

4) Any other activity suggested by course coordinator

ESE: End Semester Examination of Maximum Marks-60

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	ISE III	End Semester Examination
K1	Remember	00	00	00	00
K2	Understand	03	03	05	24
K3	Apply	12	12	05	36
K4	Analyze	00	00	00	00
K5	Evaluate	00	00	00	00
K6	Create	00	00	00	00
Total Marks 100		15	15	10	60

Assessment Table: K2 K3 **Assessment Tool** CO1, CO2 CO3,CO4, CO5 12 ISE I (15 Marks) 03 ISE II (15 Marks) 03 12 ISE III (10 Marks) 00 10 ESE (60 Marks) 24 36

ITMDM6004: Introduction to Artificial Intelligence							
Teaching Scheme	Examination Scheme	Examination Scheme					
Lectures: 03 hrs/ week	ISE I	15 Marks					
Tutorial: 0	ISE II	15 Marks					
Credits:03	ISE III	10 Marks					
	End Semester	60 Marks					
	Examination						

Course Description: This course provides a comprehensive introduction to the fundamental concepts and techniques of Artificial Intelligence (AI). It explores the theoretical foundations and practical applications of AI, including intelligent agents, search strategies, knowledge representation, logical reasoning, and learning. Students will gain insights into various problem-solving methodologies such as heuristic and adversarial search, and delve into the design of expert systems and the handling of uncertainty.

Cours	Course Outcome: After completing the course, students will be able to						
CO1	Explain the fundamentals of Artificial Intelligence, history, intelligent agents, and rational behavior in diverse environments.						
CO2	Apply various search algorithms to solve problems						
CO3	Illustrate adversarial search techniques in game playing.						
CO4	Use predicate logic, semantic networks, frames, and rules; and reason under uncertainty using probabilistic models						
CO5	Evaluate the societal impact of AI technologies.						

Detailed Syllabus:

Unit 1	Introduction to Artificial Intelligence: Overview of AI Problems, Foundations and History of Artificial Intelligence, Intelligent Agents: Agents and Environments, The Concept of Rationality, The Nature of Environments, Structure of Agents, Problem-Solving Agents, Problem Formulation
Unit 2	Search Strategies and Game Playing: Problem Solving by Searching Uninformed Search Strategies: Breadth-First Search, Depth-First Search, Informed (Heuristic) Search Strategies: Hill Climbing, A* Algorithm, AO* Algorithm, Problem Reduction Game Playing: Adversarial Search, Games and Minimax Algorithm, Optimal Decisions in Multiplayer Games, Problems in Game Playing, Alpha-Beta Pruning, Evaluation Functions
Unit 3	Knowledge Representation and Reasoning under Uncertainty: Knowledge Representation Issues, Predicate Logic and Logic Programming, Semantic Nets, Frames, and Inheritance, Constraint Propagation, Representing Knowledge Using Rules, Rule-Based Deduction Systems Reasoning Under Uncertainty: Probability Review, Bayesian Inference, Dempster-Shafer Theory
Unit 4	Logical Reasoning and Machine Learning: First-Order Logic Inference in First-Order Logic: Propositional vs First-Order Inference, Unification and Lifting, Forward and Backward Chaining, Resolution Learning from Observation: Inductive Learning, Decision Trees, Explanation-Based Learning, Statistical Learning Methods, Reinforcement Learning

Unit 5	Expert Systems and Advanced Topics: Introduction to Expert Systems, Basic Concepts and
	Structure, Human Element in Expert Systems, How Expert Systems Work, Problem Areas
	Addressed by Expert Systems, Success Factors and Types of Expert Systems, Expert Systems
	on the Web
	Societal Impacts of AI

Reasoning in AI: Inference with Rules and Frames, Model-Based and Case-Based Reasoning, Explanation and Meta-Knowledge, Reasoning with Uncertainty

Text Books & Reference Books

- 1. Stuart J. Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach" 3rd Edition. (Unit: 1,2,3,4,5)
- **2.** Bratko, Prolog "Programming for Artificial Intelligence", 3rd ed. Harlow, UK: Addison-Wesley, 2001(Unit: 2,3)
 - **3.** Goodfellow, Y. Bengio, and A. Courville, "Deep Learning". Cambridge, MA, USA: MIT Press, 2016.
- **4.** S. Russel and P. Norvig, "Artificial Intelligence A Modern Approach", SecondEdition, Pearson Education

5. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: a logical approach", Oxford University Press.

6. G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem solving", Fourth Edition, Pearson Education.

7. J. Nilsson, "Artificial Intelligence: A new Synthesis", Elsevier Publishers.

Web Resources

- 1. https://nptel.ac.in/courses/106102220 Prof. Mausam, IIT Delhi
- 2. <u>https://onlinecourses.nptel.ac.in/noc24_ge47/preview</u> Prof. Shyamanta M. Hazarika, IIT Guwahati
- 3. https://onlinecourses.nptel.ac.in/noc22_cs56/preview

Mapping of Course outcome with Program Outcomes and Program Specific Outcomes

Course	РО	РО	PO	PO	PO	РО	PO	РО	РО	Р	Р	Р	PS	PS	PS
outcom	1	2	3	4	5	6	7	8	9	0	0	0	01	O 2	O 3
e										10	11	12			
CO1	1	2	2	2	3						1	2	1	2	1
CO2	1	2	2	2	3						1	2	1	2	1
CO3	1	2	2	2	3						1	2	1	2	1
CO4	1	2	2	2	3						1	2	1	2	1
CO5	1	2	2	2	3						1	2	1	2	1

3- High 2 - Medium 1 - Low

Assessment:

ISE I / ISE II /ISE III:

In Semester Evaluation can be based on:

- 1. Class Test
- 2. PowerPoint presentation
- 3. Question & answer / Numerical solution
- 4. Surprise test
- 5. Any other activity suggested by course coordinator

ESE: End Semester Examination as per guidelines

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	ISE III	End Examination	Semester
K1	Remember	5	5	2	15	
K2	Understand	7	7	3	20	
К3	Apply	3	3	5	15	
K4	Analyze	-	-	-	10	
K5	Evaluate	-	-	-	-	
K6	Create	-	-	-	-	
Total Marks 100		15	15	10	60	

Assessment table:

Assessment Tool	K1	K2	K3
	CO1	CO2,CO3	CO4,CO5
ISE I (15 Marks)	6	5	4
ISE II (15 Marks)	2	6	7
ISE III (10 Marks)	2	4	4
ESE Assessment (60 Marks)	10	25	25
Total Marks 100	20	40	40

ITMDM5005:Lab. Java Programming								
Teaching Scheme	Examination Scheme							
Practical: 2Hrs/Week	ISE I* (Term Work)	25 Marks						
Credits:01	End Semester Evaluation							

Course C	Course Outcomes: After completion of this course students will be able to:						
CO1	Develop, debug, and document Java programs using core Object-Oriented						
	Programming (OOP) concepts such as classes, objects, inheritance, and						
	polymorphism.						
CO2	Implement Java applications by effectively utilizing Object-Oriented Programming						
	principles to solve real-world problems.						
CO3	Apply structured exception handling mechanisms to build robust and error-resilient						
	Java programs.						
CO4	Design and implement multithreaded applications in Java to achieve concurrency						
	and enhance performance.						

List of the Experiments: The student shall perform minimum ten experiments of the following using Java

Sr. No.	Title of the Experiments	Skill / Knowledge Level	CO	Marks for ISE
	l: Basic (all)			·
<u>ттр</u> 1	ement programs on Fundamentals of Java Programming	S1	CO1	02
1	Write a Java program to convert time in seconds to hours, minutes and seconds and display the output in format HH:MM:SS	51	COI	02
2	Write a Java program to rearrange all the elements of a given array of integers so that all the odd numbers come before all the even numbers.	S2	CO2	02
3	Write a Java program that accepts three integers from the user and return true if two or more of them (integers) have the same rightmost digit. The integers are non- negative.	S2	CO2	02
4	Create a Java class called Complex with the following details as member variables within it. (i) Real (ii) Imaginary. Develop a Java program to perform addition and subtraction of two complex numbers by using the method add() and subtract() respectively, by passing object as parameter and display result using method display(). Initialize the real and imaginary values of the complex number using parameterized constructor. Also demonstrate overloading constructors and methods.	S2	CO2	02
5	Design an Address class with member variables Street num, city, state and country and appropriate constructor. Design a Student class with constructor (Student (String USN, String Name, Stringaddr)), College class with constructor (College (String Name, String addr)) and Employee class with constructor (Employee (String EmpID, String Name, Stringaddr)). Write a Java program to create 'n' Student objects, College Objects and Employee objects and print the student, college and employee addresses respectively and demonstrate passing of object as a parameter to the constructor.	S2	CO2	02
Leve	l: Moderate		Cas	

Dr. Smita Chavan Head, IT Approved in XXXth Academic Council Meeting Dated: 5th July 2025

6	Abstract classes, Inheritance& polymorphism:	S3	CO2	03
0	Write a java program to create an abstract class named shape	35	002	03
	that contains two integers and an empty method named			
	printArea(). Create three classes named Rectangle, Triangle			
	and Circle such that each one of the classes extends the class			
	shape. Each one of the class contains only the method			
	printArea() that print the area of the given shape			
7	Exception Handling:	S3	CO4	03
	Write a program that creates a user interface to perform integer			
	divisions. The user enters two numbers in the text fields, Num1			
	and Num2. The division of Num1 and Num2 is displayed in			
	the Result field when the Divide button is clicked. If Num1 or			
	Num2 were not an integer, the program would throw Number			
	Format Exception. If Num2 were Zero, the program would			
	throwan Arithmetic Exception. Display the exception in a			
	message dialog box.			
8	Multithreading:	S3	CO4	03
	Write a Java program that implements a multithreaded program			
	with three threads. First thread generates a random integer			
	every 1 second and if the value is even, second thread			
	computes the square of the number and prints. If the value is			
	odd the third thread will print the value of cube of the number.			
Leve	l: Complex			I
Leve	, complex			
9	Write a Java program for the following: i) Create a doubly	S3	CO4	03
	linked list of elements. ii) Delete a given element from the			
	above list. iii) Display the contents of the list after deletion			
10	Write a Java program that implements Quick sort algorithm for	S3	CO4	03
	sorting a list of names in ascending order.			

Assessment:

ISE I (Term Work):In-Semester Evaluation of 25 marks each will be based on practical assignments completed and timely submission

End Semester Evaluation: The ESE will be based on oral / practical performance of the students **Assessment Table**:

Assessment Tool	S1	S2	S3
	CO1	CO2, CO3	CO4
ISE I (Term Work)	00	10	15
End Semester Evaluation (Practical Examination &Viva Voce)	00	10	15

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	End Semester Examination
S1	Imitation	05	05
S2	Manipulation	10	10
S3	Precision	10	10
S4	Articulation	00	00
S5	Naturalization	00	00
Total Marks		25	25

Mapping of Course outcome with Program Outcomes and Program Speci

Course					Prog	gram O	utcom	es		-	-		P	50's	
Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1		1	2	1								1	1	1
CO2			2	1	1								1	1	1
CO3					2		1		1		2	2	1	1	1
CO4							2		3		2	3			

3 - High 2 - Medium 1 - Low

ITMDM6005 Lab :- Python Programming										
Teaching Scheme Examination Scheme										
Practical: 2Hrs/Week	ISE I (Term Work)	25 Marks								
Credits:01	End Semester Evaluation									

Cours	Course Outcome: After completing the course, students will be able to									
CO1	To Understand python environment and implement codes with object oriented concepts									
CO2	To Understand Strings, Lists, Tuples and Dictionaries in Python									
CO3	To Develop the application specific codes using python									
CO4	To Verify programs using modular approach, file I/O, Python standard library									

List of the Experiments:

The student shall perform minimum ten experiments of the following using Python

Sr. No.	Title of the Experiments	Skill / Knowledge Level	СО
1	 Python Basics & Control Flow 1. Write a Python program to accept user input and print a formatted greeting. 2. Create a calculator using if-else statements and user input. 3. Check whether a number is even or odd, positive or negative. 4. Print a multiplication table using a for loop. 	S1	CO1
2	 Strings and Basic Operations Perform various string operations: slicing, indexing, and formatting. Count the number of vowels in a given string. Reverse a string without using built-in functions. Check if a string is a palindrome 	S1	CO2
3	 Lists, Tuples, Sets 1. Create a shopping list program using lists. 2. Find the largest and smallest number in a list. 3. Convert a list to a tuple and back. 4. Perform union, intersection, and difference on two sets. 	S2	CO2
4	 Dictionary Operations 1. Create a phonebook using a dictionary. 2. Count frequency of each word in a sentence. 3. Merge two dictionaries. 4. Remove duplicate values from a dictionary 	S2	CO3

5	Commentanciana and Nasta 1 Starter	52	CO1
5	Comprehensions and Nested Structures	S2	CO1
	1. Generate a list of squares from 1 to 10 using list		
	comprehension.		
	2. Create a dictionary mapping numbers to their		
	cubes.		
	3. Flatten a nested list using list comprehension.		
6	Functions & Recursion	S3	CO1/CO3
	1. Create a function to calculate the factorial of a		
	number using recursion.		
	2. Write a function that takes variable-length		
	arguments and returns their sum.		
	3. Implement a function that checks whether a		
	number is prime		
7	Lambda, Map, Filter, Reduce	S3	CO3
	1. Use map() to square a list of numbers		
	2. Use filter() to extract even numbers from a list.		
	3 Use reduce() to compute the product of a list		
	of numbers		
	4. Combine zip() and map() to add two lists		
	element-wise		
8	OOP in Python	S3	CO1
	1. Create a class Student with attributes and		
	methods		
	2. Implement inheritance with a Vehicle and Car		
	class		
	3. Demonstrate encapsulation using private		
	variables		
	4. Use polymorphism with a Shape base class and		
	two derived classes		
9	File Handling and Exception Management	S3	CO4
	1. Read from a text file and count the number of		
	lines and words.		
	2. Write and append data to a file.		
	3. Create a program that handles file not found		
	exception gracefully		
	4. Create a custom exception for age validation.		
10		C.4	002/004
10	Flask Mini Web App	S4	CO3/CO4
	1. Create a basic Flask app with home and about		
	routes.		
	2. Build a simple form to collect user data (e.g.,		
	contact form).		
	3. Store submitted form data into a file or SQLite		
	database		
	4. Display submitted data on another route.		

Assessment:

ISE I (Term Work) : In-Semester Evaluation of 25 marks each will be based on practical assignments completed and timely submission

End Semester Evaluation: The ESE will be based on oral / practical performance of the students Assessment Table:

Assessment Tool	S1	S2	S3/S4
	CO1	CO2, CO3	CO4
ISE I (Term Work)	10	7	8

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I
S1	Imitation	05
S2	Manipulation	7
\$3	Precision	8
S4	Articulation	05
S5	Naturalization	00
Total Marks		25

Mapping of Course outcome with Program Outcomes and Program Specific Outcomes:

	Program Outcomes											PSO's			
Co urse															
outcome	РО	PO	РО	PO	РО	РО	РО	РО	PO	Р	Р	Р	PS	PS	PS
	1	2	3	4	5	6	7	8	9	0	Ο	0	01	O 2	O 3
										10	11	12			
CO1	1	2											3	3	2
CO2		2											2	3	2
CO3		2	1										2	3	3
CO4		2	2	3	2								1	3	2

 $3 - High \quad 2 - Medium \quad 1 - Low$

ITOEC0030 : Machine Learning										
Teaching Scheme	Examination Scl	Examination Scheme								
Lectures: 02 hrs/ week	ISE I		10 Marks							
Tutorial: 0	ISE II		10 Marks							
Credits:02	End	Semester	30 Marks							
	Examination									

Course Description:

Cours	Course Outcome: After completing the course, students will be able to								
CO1	Understand fundamental concepts of Machine Learning and its applications.								
CO2	Apply supervised learning algorithms to classification and regression problems.								
CO3	Implement unsupervised learning methods including clustering and dimensionality reduction.								
CO4	Evaluate model performance using appropriate metrics and techniques.								

Detailed Syllabus:

Unit 1	Introduction to Machine Learning: Basics of Machine Learning, Applications, Types: Supervised, Unsupervised, Reinforcement Learning, Steps in a Machine Learning project, Data preprocessing: handling missing values, normalization, standardization, Feature selection and engineering
Unit 2	Supervised Learning – Regression: Linear Regression: simple and multiple, Polynomial Regression, Evaluation metrics: MSE, Implementation using Python (e.g., Scikit-learn)
Unit 3	Supervised Learning – Classification: Decision Trees, k-Nearest Neighbors, Support Vector Machines, Evaluation metrics: Confusion matrix, Precision, Recall, F1 Score, Unsupervised Learning: Clustering: k-Means, Hierarchical clustering,

Text Books & Reference Books

Tom M. Mitchell, "Machine Learning", McGraw Hill

Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow", O'Reilly

Ethem Alpaydin, "Introduction to Machine Learning", MIT Press.

Course	Prog	gram	Outc	omes	6											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	1	2	2	0	0	0	0	0	0	3	0	2	1	3	1	
CO2	2	2	3	0	0	0	0	0	0	0	0	1	2	3	1	
CO3	3	2	1	0	0	3	0	2	0	0	0	3	SOR	2		R

Mapping of Course outcome with Program Outcomes and Program Specific Outcomes

Dr. Smita Chavan Head, IT Dean Aca Approved in XXXth Academic Council Me Dated: 5th July 2025

Dr. Anil Karv

CO4	1	3	3	0	0	0	1	0	0	1	0	2	2	0	2
-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

3- High 2 - Medium 1 - Low Assessment: ISE I / ISE II : In Semester Evaluation can be based on: Class Test Power point presentation Question & answer / Numerical solution Surprise test Any other activity suggested by course coordinator ESE: End Semester Examination as per guidelines Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1	Remember	02	02	05
K2	Understand	04	04	15
K3	Apply	04	04	10
K4	Analyze	00	00	00
K5	Evaluate	00	00	00
K6	Create	00	00	00
Total Marks 50		10	10	30

Assessment table:

Assessment Tool	K1	K2	K3
	CO1	CO2,CO3	CO4
ISE I (10 Marks)	02	04	04
ISE II (10 Marks)	02	04	04
ESE Assessment (30 Marks)	05	15	10
Total Marks 50	09	23	18

		I	SEMES									
			Hours per week					Cont				
		C		per	· We	eek		in terms of Marks		KS		
C N	C (Course	с ти	т	T	п		ICEI	ICELL	ISE	EGE	T ()
<u>Sr.No</u>	Category	Code	Course Title	L	Τ	Р	Credits	ISEI	ISEII	III	ESE	Total
1	DCC		Cryptography and	2	0	0	2	15	15	10	()	100
$\frac{1}{2}$	PCC PCC	ITPCC3010 ITPCC3011	Network Security	3	0	0	3	15 15	15 15	10	60 60	100
2	PCC	TIPCC3011	Machine Learning	3	0	0	3	15	15	10	60	100
3	DCC	ITPCC3012	Software	3	0	0	3	15	15	10	60	100
3	PCC	11PCC3012	Engineering	3	0	0	3	15	15	10	60	100
			Lab Cryptography and Network									
4	PCC	ITPCC3013	Security	0	0	2	1			25	25	50
-7	100	111005015	Lab Machine	0	0	2	1			25	25	50
5	PCC	ITPCC3014	Learning	0	0	2	1			25	25	50
	100		Learning	Ŭ	Ŭ		1			20	20	20
		ITPEC3021										
6	PEC	ITPEC3021 ITPEC3023	Professional	2	0	0	2	10	10		30	50
6	PEC	ITPEC3025	Elective IV and V	2	U	0	2	10	10	-	30	50
		111 LC3025										
7	PEC											
/	FEC											
			Labs Professional	0	0	2	1			25	-	25
		ITPEC3024 ITPEC3026	Elective IV and V									
		TIPEC3020	D (1									
			Python									
			Programming									
8	MDM		Introduction to Machine Learning	3	0	0	3	15	15	10	60	100
0			Advanced Java	5	U	U	5	13	15	10	00	100
9	VSEC-3	ITVSE2001	Programming	1	0	0	1	15	0	10	0	25
		11,002001	Lab Advanced Java	1		0	1	15	0	10	0	23
10	VSEC-3	ITVSE2002	Programming	0	0	2	1	-	_	25	25	50
Total Credits with MDM		17		10	22	195	80	75	375	675		
			Applied									
			Accelerated									
			Artificial									
	11	ITHNC7001	Intelligence	3	0	0	3				100	100
Total	Credits wi	th MDM + H	onors	20	0	10	25	195	80	75	475	775

List of Professional Electives (Theory+Lab)

Professional Elective IV and V
ITPEC3021Advanced DBMS
ITPEC3022Lab Advanced DBMS
ITPEC3023Deep Learning
ITPEC3024 Lab Deep Learning
ITPEC3025Datawarehousing and Data Mining
ITPEC3026Lab Data warehousing and Data Mining

ITMDM5006 : Python Programming					
Teaching Scheme Examination Scheme					
Lectures: 03 hrs/ week ISE I 15 Marks					
Tutorial: 0	ISE II	15 Marks			
Credits:03	ISE III	10 Marks			
	End Semester Examination	60 Marks			

Course Description:

Cours	Course Outcome: After completing the course, students will be able to					
CO1	Interpret the fundamental Python syntax and semantics and be fluent in the use of Python					
	control flow statements. Understand					
CO2	CO2 Express proficiency in the handling of strings and functions.					
CO3	Determine the methods to create and manipulate Python programs by utilizing the data					
	structures like lists, dictionaries, tuples and sets					
CO4	Identify the commonly used operations involving file systems and regular expressions.					
CO5	Articulate the Object-Oriented Programming concepts such as encapsulation, inheritance and polymorphism as used in Python.					

Detailed Syllabus:

	Synabus.
Unit 1	Introduction to Python: What is Python and where it's used,Installing Python and IDEs (VS Code / PyCharm / Jupyter), First Python program,Print, comments, indentation, Numbers, strings, booleans, Type conversion, Input/output functions, Arithmetic, comparison, logical, Assignment, membership, identity operators
Unit 2	Control Structures & Strings Conditional statements, Nested conditions, Real-world examples ,Iterating through sequences Loop patterns, break, continue, pass, Practical exercises, String operations and slicing Useful string methods,f-strings and formatting
Unit 3	Data Structures: List Creating and updating lists, Indexing, slicing, List methods (append, insert, remove, etc.), Immutable sequences, Tuple unpacking, Tuple vs List comparison, Key-value pairs, Dictionary methods (get, update, pop), - Looping through dictionaries, Set operations (union, intersection), Use-cases, Set methods, Comprehensions - List, dict, and set comprehensions, Nested comprehensions, Use cases , Functions- Syntax, calling functions, Return values, Practical use, Default, keyword, variable-length (*args, **kwargs), Argument unpacking, Lambda and Built-in Functions

Unit 4	Object-Oriented Programming: Introduction to OOP, basics concepts of OOP, variables and methods, Inheritance and its types, Polymorphism and its types,
Unit 5	Files and Exceptions: File Handling – Reading/ open /close, file opening modes, Exception Handling : Try, except, else, finally, - Raising exceptions, - Custom exception examples

Text Books & Reference Books

- 1. Mark Lutz, Learning Python: A Powerful Object-Oriented Programming.
- 2. John M. Zelle, Python Programming: Introduction to Computer Science. 2.
- 3. Eric Matthes, Python Crash Course, 2nd Edition"

Web Resources

- 1. https://www.geeksforgeeks.org/creating-a-pandas-series/
- 2. https://www.udemy.com/course/100-days-of-code/?couponCode=IND21PM

Course	PO	PO	PO	Р	Р	Р	PS	PS	PS						
outcom	1	2	3	4	5	6	7	8	9	0	0	\mathbf{O}	01	02	03
e		-	5			Ŭ	, í	Ŭ	-	10	11	12	01	° -	0.5
CO1	3	2	1										3	2	1
CO2	2	2											2	2	2
CO3		2	3										2	3	2
CO4			3	2									2	2	2
CO5	2	3	2										3	2	3

Mapping of Course outcome with Program Outcomes and Program Specific Outcomes

3–High 2 – Medium 1 - Low

Assessment:

ISE I: Class Test-I of Maximum Marks-15

ISE II: Class Test-II of Maximum Marks-15

ISE III: Teacher's Assessment of Maximum Marks-10

Teachers Assessment of 10 marks is based on one of the / or combination of few of following

1) Power point presentation

- 2) Question & answer / Numerical solution
- 3) Surprise test
- 4) Any other activity suggested by course coordinator

Assessment Pattern:

Assessment Pattern Level	Knowledge	ISE	ISE	ISE	End	Semester
No.	Level	Ι	II	III	Examination	
K1	Remember	5		4	15	
K2	Understand	10	10	2	20	
K3	Apply		5	4	25	
K4	Analyze					
K5	Evaluate					
K6	Create					
Total Marks 100		15	15	10	60	

Assessment table:

Assessment Tool	K1	K2	K3
	CO1	CO2,CO3	CO4,CO5
ISE I (15 Marks)	7	8	
ISE II (15 Marks)		10	5
ISE III (10 Marks)	4	2	4
ESE Assessment (60 Marks)	15	20	25
Total Marks 100			

ITMDM6006 : Introduction to Machine Learning					
Teaching Scheme Examination Scheme					
Lectures: 03 hrs/ week	ISE I	15 Marks			
Tutorial: 0	ISE II	15 Marks			
	ISE III	10 Marks			
Credits:03	End Semester Examination	60 Marks			

Course Description:

Cours	Course Outcome: After completing the course, students will be able to					
CO1	Understand fundamental concepts of Machine Learning and its applications.					
CO2	Apply supervised learning algorithms to classification and regression problems.					
CO3	Implement unsupervised learning methods including clustering and dimensionality reduction.					
CO4	Evaluate model performance using appropriate metrics and techniques.					

Detailed Syllabus:

Unit 1	Introduction to Machine Learning: Basics of Machine Learning, Applications, Types: Supervised, Unsupervised, Reinforcement Learning, Steps in a Machine Learning project, Data preprocessing: handling missing values, normalization, standardization, Feature selection and engineering
Unit 2	Supervised Learning – Regression: Linear Regression: simple and multiple, Polynomial Regression, Evaluation metrics: MSE, Implementation using Python (e.g., Scikit-learn)
Unit 3	Supervised Learning – Classification: Decision Trees, k-Nearest Neighbors, Support Vector Machines, Evaluation metrics: Confusion matrix, Precision, Recall, F1 Score
Unit 4	Unsupervised Learning: Clustering: k-Means, Hierarchical clustering, Dimensionality Reduction, Applications in customer segmentation, anomaly detection, Visualization techniques, Bagging: Random Forest
Unit 5	Ensemble Learning and Model Deployment: Bagging: Random Forest, Boosting: AdaBoost, Gradient Boosting, Basics of model interpretability, Introduction to model deployment and tools (e.g., Flask, Streamlit overview), Case studies and mini project guidance

Text Books & Reference Books

Tom M. Mitchell, "Machine Learning", McGraw Hill

Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow", O'Reilly

Ethem Alpaydin, "Introduction to Machine Learning", MIT Press.

Mapping of Course outcome with Program Outcomes and Program Specific Outcomes

Course	Prog	gram	Outc	omes	5									
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1PSO2PSO3	
CO1	1	2	2	0	0	0	0	0	0	3	0	2	SOB	BAril
													Dr. Smita Chavan	Dr. Anil Kanwani

CO2	2	2	3	0	0	0	0	0	0	0	0	1	2	3	1
CO3	3	2	1	0	0	3	0	2	0	0	0	3	0	2	3
CO4	1	3	3	0	0	0	1	0	0	1	0	2	2	0	2

3–High 2 – Medium 1 - Low

Assessment:

ISE I / ISE II :

In Semester Evaluation can be based on:

Class Test

Power point presentation

Question & answer / Numerical solution

Surprise test

Any other activity suggested by course coordinator

ESE: End Semester Examination as per guidelines

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1	Remember	02	02	05
K2	Understand	04	04	15
K3	Apply	04	04	10
K4	Analyze	00	00	00
K5	Evaluate	00	00	00
K6	Create	00	00	00
Total Marks 50		10	10	30

Assessment table:

Assessment Tool	K1	K2	K3
	CO1	CO2,CO3	CO4
ISE I (10 Marks)	02	04	04
ISE II (10 Marks)	02	04	04
ESE Assessment (30 Marks)	05	15	10
Total Marks 50	09	23	18

ITVSE2001: Advanced Java programming								
Teaching Scheme Examination Scheme								
Lectures: 01 hrs/ week	ISE I	15 Marks						
Tutorial: -	ISE II	00 Marks						
Credits: 01	Credits: 01 ISE III 10 Marks							
	End Semester Examination 00 Marks							

Prerequisites: - ITPCC2003Object Oriented Programming

Course Description:

This course covers mechanisms and techniques used to build an applications using Collection, Streams, Functional Programming using Lambdas, Observer and Decorator patterns.

	Course Outcomes: After completing the course, students will able to:							
CO1	Implement Collection framework and streams.							
CO2	Demonstrate functional programming using lambda.							
CO3	Implement Functional Programming, Observer and Decorator to manage projects.							

Detailed Syllabus:

Unit 1	Collections & Streams: Iterators, Sets, Maps, Streams, Stream Creations, filter
	map&flatmap methods, Parallel Streams
Unit 2	Lambdas & Functional Programming: Syntax of Lambdas Expressions, Functional
	Interfaces
Unit 3	Observer and Decorator pattern: Introduction and application of Observer and Decorator
	Patterns

Text Books & Reference Books

- 1. Effective Java by Joshua Bloch
- 2. Head First Design Patterns by Eric Freeman
- 3. Thinking in Java by Bruce Eckel
- 4. Core Java for the Impatient by Cay Horstmann

Web Resources

- <u>https://www.baeldung.com/</u>
- <u>https://javaranch.com/</u>
- https://leetcode.com

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes

Course outcom					Pr	ogran	n Out	comes						gram Sj comes	pecific
es	P O 1	P O 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO8	PO 9	PO 10	PO 11	P O 12	PSO 1	PSO 2	PSO 3
CO1	1		1	2	1								1	1	1
CO2			2	1	1								1	1	1
CO3					2		1		1		2	Dr. Smita C			Dr. Anil Karwa
												Head, App	roved in XXX th	Academic Cou : 5th July 2025	

3 - High 2 - Medium 1 - Low

Assessment:

ISE I-Class Test-I of Maximum Marks-15 ISE II-Class Test-II of Maximum Marks-00 ISE III-Teacher's Assessment of Maximum Marks-10

Teachers Assessment of 10 marks is based on one of the / or combination of few of following

- 1) Surprise test
- 2) Assignment
- 3) Quizzes
- 4) Any other activity suggested by course coordinator

ESE-End Semester Examination of Maximum Marks-00

Assessment	Knowledge	ISE I	ISE II	ISE III	End Semester
Pattern	Level				Examination
Level No.					
K1	Remember	00	00	00	00
K2	Understand	05	00	02	00
K3	Apply	10	00	08	00
K4	Analyze	00	00	00	00
K5	Evaluate	00	00	00	00
K6	Create	00	00	00	00
Total Marks	100	15	00	10	00

Assessment Pattern:

Assessment table:

Assessment Tool	K2	K3
	CO1	CO2,CO3
ISE I(15 Marks)	05	10
ISEII(00 Marks)	00	00
ISEIII (10 Marks)	02	08
ESE Assessment (00 Marks)	00	00
Total Marks 25	07	18

ITVSE2002:Lab Advanced Java Programming						
Teaching Scheme	Examination Scheme					
Lectures: 2hrs/ week	ISE I	00 Marks				
Tutorial: -	ISE II	00 Marks				
Credits: 01	ISE III	25 Marks				
	End Semester Examination	25 Marks				

Prerequisites: - ITPCC2003 Object Oriented Programming

Course Description:

This course covers mechanisms and techniques used to build an applications using Collection, Streams, Functional Programming using Lambdas, Observer and Decorator patterns.

Course Outcomes:

After completion of this course students will be able to:

	Course Outcomes
CO1	Make use of Collection framework and streams.
CO2	Demonstrate functional programming using lambda.
CO3	Demonstrate file handling &Reflection.
CO4	Implement Functional Programming, Observer and Decorator to manage projects.

List of the Experiments:

Sr. No.	Title of the Experiments	Skill / Knowledge Level	СО	Marks for ISE
	Level: Basic			
1	Implementationof CollectionFramework: a. ListInterface b. Queue Interface c. Set Interface	S1	CO1	2
2	Comparable Comparator: Write a program to sort ArrayList using Comparable and Comparator?	S1	CO1	2
3	 Stream: a. Given a list of integers, find out all the even numbers exist in the list using Stream functions? b. How to find duplicate elements in a given integers list in java using Stream functions? 	S1	CO1	2
	Λεσελ: Μοδερατε			
5	Lambda: Write a program to iterate over List with and without using Lambda expressions.	S3	CO2	3
6	File Handling: "Reading a JSON/CSV file as an object: Write a program that reads the given JSON/CSV file as an object (POJO)." OR "Discovering mismatches between two files: Write a program that discovers the mismatches between two files at	\$3	CO3	3
				Dr. Anil Kan Dean, Acad ccademic Council Meeting 5th July 2025

	the byte level."			
	Level: Complex			
9	Reflection : Getting static methods: Write a program that groups the static methods of the given class and invokes one of them via reflection." OR "Getting public and private fields: Write a program that fetches the public and private fields of the given class via reflection."	S4	CO3	3
11	Functional Programming - Observer: "Implementing the Observer pattern: Write a program that represents an implementation of the Observer pattern based on lambdas." OR "Implementing the Decorator pattern: Write a program that represents an implementation of the Decorator pattern based on lambdas."	S4	CO4	3
13	Study features of Java 17	S4	CO1, CO2, CO3,CO4	02
14	Mini Project using advanced Java features and techniques. (JDBC, Spring, Hibernate, JSP, Servlets etc)	S4	CO1, CO2, CO3,CO4	05

Text Books & Reference Books

- 5. Effective Java by Joshua Bloch
- 6. Head First Design Patterns by Eric Freeman
- 7. Thinking in Java by Bruce Eckel
- 8. Core Java for the Impatient by Cay Horstmann

Web Resources

- https://www.baeldung.com/
- https://javaranch.com/
- https://leetcode.com •

Assessment Table:

Assessment Tool	K1	K2	K3	K3
	CO1	CO2	CO3	CO4
Term work(25Marks)	06	03	06	10
Practical Examination & Viva Voce(00 Marks)	00	00	00	00

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	End Semester Examination
S1	Imitation	03	00 600

RAN Approved in XXXth Academic Council Meeting Dated: 5th July 2025

Dr. Smita Chavan Head, IT

S2	Manipulation	00	00
S3	Precision	10	00
S4	Articulation	12	00
S5	Naturalization	00	00
Total Marks		25	00

Mapping of Course outcome with Program Outcomes and Program Specific Outcomes 3 – High 2 – Medium 1 - Low

5 – Ingn	4 -	vicuit		- LU	**										
Course	Р	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
outcom	Ο	2	3	4	5	6	7	8	9	10	11	12	1	2	3
e	1														
CO1	1		1	2	1								1	1	1
CO2			2	1	1								1	1	1
CO3					2		1		1		2	2	1	1	1
CO4							2		3		2	3			

After third year: Candidate should complete the internship of two months for 8 credits or the candidate should pass the following two courses of 8 credits to qualify B.Voc. Degree. Any two from the list of electives, except registered earlier

